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ABSTRACT

Statistical cost control decisions may be based on two
competing decision models. The Markovian Control model con-
trols a process by investigating the process whenever the
reported cost exceeds a fixed critical limit. The Bayesian
Control model controls a process by using the reported cost
to update the probability of the process being in-control and
investigate the process whenever such posterior probability
is less than a fixed critical value.

This paper compares the relative effectiveness of the two
models by a simulation analysis. 1t is observed that the
Markovian Control model performs as well as or better than
the Bayesian Control model unless the cost distribution of
the in-control state is more dispersed than that of the out-
of-control state. It is also observed that the relative
effectiveness of the Markovian Control model compared to the
Bayesian Control increases as the savings from an investiga-

tion increases when the cost distribution of the in-control

state is less dispersed than that of the out-of-control state.
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I. INTRODUCTION

A. BACKGRQUND

Financial planning and control rely heavily on standard
costs or budgets as the principal tool for aiding decision
making. Performance reports typically include a comparison
of actual cost incurred and amount budgeted or allowed.
Variations in cost performance can be expected in virtually
every case, The variation may be caused by random variation
or non-random variation. Random variation is a deviation be-
tween actual and expected cost arising from the stochastic
operation of some correctly specified relationships between
variables. The stochastic nature means that the actual cost
is subject to fluctuations because of random variations beyond
management's control. Non-random variation is a deviation in
cost performance caused by factors over which the manager or
his superior has some control.

Non-random variation can be corrected by investigating the
cost generating process to identify the causal factors for
corrective decisions. But no one advocates taking action and
investigating every cost variance that occurs each period.
Managers recognize that many variances are insignificant and
caused by random, non-controllable factors. Since any inves-
tigation will involve a certain expenditure of effort and

funds, managers should attempt to take investigation and

corrective action only when the cost variation is significant




and controllable. Furthermore an investigation should be

undertaken only if the benefits expected fi )m the investiga-
tion exceed the costs of searching for and correcting the
source of cost variance.

Therefore, a control problem in the cost management is
to establish a control policy according to which a cost
generating process shall be investigated to see if correc-

tive action is necessary or economic.

B. ISSUES IN COST VARIANCE INVESTIGATION DECISIONS

Several researchers have attempted to develop cost vari-
ance investigation decision models by using a statistical
approach. The basic idea of these approaches came from the
statistical quality control concept in which it is assumed
that some random variations in cost performance are available
and should be specifically taken into consideration in making
decisions about investigation of variances.

Since a manager wants to control the cost generating pro-
cess, he should decide when a variance is worthy of investiga-
tion. If the variance resulted from non-controllable factors,
or if future operations would not improve even if the cause
of the variance was determined, he would prefer not to waste
time and money investigating such variances. On the other
hand, if investigation will result in substantial future sav-
ings and more efficient operation, he will probably want the
variance investigated. For deciding whether to investigate

the process or not, the manager's available information consists

10




of some prior knowledge about the process and a cost report

which was generated from the process. Therefore, in deciding

whether to invastigate a variance of the cost report, the

following factors should be considered [1l].

a. The probability that the variance resulted from the

random, non-controllable causes.
b. The reward which will result if the variance is investi-
gated together with the associated probability of this reward.
c. Cost of investigation.

It is presumed that the costs generated from the process

have some kind of probability distribution regardless of the
cause of the deviations and that different causes will result

in different probability distributions in cost performance.
Attributing to the characteristics of probability, a decision
maker always associates some probability of errors (which are
called type I and type II error) with his judgment about whether
a cost variance is caused by random factors. If the distribu-
tions of costs which may be caused by controllable or non-
controllable factors are normal distributions, these errors

can be explained as in Figure 1l-1.

In Figure 1l-1, we can say that the left side probability
distribution function (p.d.f.) is the p.d.f. of costs in "in-
control" state, a desirable state, and the right side p.d.f.
is the p.d.f. of costs in "out~of-control" state, an undesir-
able state which needs investigation. We assume that the
process under consideration exists in either in-control state

or out-of-control state. The type 1 error means that the

11




cost distribution caused cost distribution caused
?yxu:v«xrmxcdlable by cantrollable factors
actors

Figure 1~1: Error of Decision

manager decides not to investigate the process when the
actual state is out-of-control; thus it causes loss of poten-
tial savings from investigation. The type II error means that
the manager decides to investigate the process when the actual
state is in-control; thus the cost of investigation is wasted.
Therefore, the manager has to figure out what control
limit or control criteria (in the figure the control limit X)
can minimize those costs (loss and waste). All statistical
approaches to cost control decisions are aimed at finding
these control criteria.
The statistical control methods can be classified into
two types: (1) the Markovian control method and (2) Bayesian
control method. Both types suggested setting control limits

on which the manager decides whether or not to investigate

12




the process when a cost report from the process is available.
The underlying objective in both cases is to minimize long ;
run expected incremental cost (waste and loss) or maximize

savings from investigation (cost reduction minus incurred

cost for the investigation).

The Markovian Control method was suggested in the article
"Cost Variance Investigation; Markovian Control of Markov
Process" (2], by Dittman and Prakash in 1978. Under this
method, the cost variance investigation decision is dependent
on one critical limit which minimizes the cost of the process
and can be computed by trial and error.

The Bayesian control was suggested in the article "The
Investigation of Cost Variance" [3], by Dykman in 1969. Under
this method, the cost variance investigation decision is de-
termined by the critical probability which is a function of
all incremental costs involved.

The two statistical approaches found in the literature
do not always result in the same investigate/do-not-investi-
gate decision. A question arises as to which model will lead
to the optimal decisions. Using an analytic approach, Dittman

and Prakash maintained that their Markovian control model is

more effective than the Bayesian control model. However, the
real test of the relative effectiveness of each model under

different conditions remained to be seen. As Kaplan [4] puts
it, "the final judgment on the appropriateness of formal sta-

tistical and mathematical methods for cost variance analysis

must be based on empirical studies" [4: p. 312). Inan empirical




study, Magee [S] implemented a simulation analysis of various
cost variance investigation methods, but he didn't study the
Markovian control method for it was not yet known. He justi~
fied simulation by saying that "the simulation analysis is
generally preferable to use analytic methods to find the
properties of alternative decision models, when such methods
are feasible. By using the same sequence of random numbers,
the various cost investigation models can be tested on similar
cost data, facilitating comparisons among models” (5: p. 532].
Simulation is a dynamic representation of the real world
achieved by building a model and moving it through time. 1In
a simulation, we can control many features. For comparison
of two cost variance investigation methods, we can simulate
various combination of situations in the in-control state and
out-of-control state. Simple Monte Carlo simulation can be
a useful tool for comparison of two cost variance investiga-

tion methods.

C. OBJECTIVE AND SCOPE OF THE STUDY

The purposes of this paper are to develop a simulation
model for the purpose of comparing the relative effectiveness
of the two cost variance investigation methods and to evaluate
the effectiveness of the two cost variance investigation
methods.

To compare the best Markovian control with the best
Bayesian control, the optimal critical limit for the Markovian

control method and optimal critical probability for the Bayesian




control method must be derived. It is not too complicated to
calculate the optimal critical limit, but the calculation of
optimal critical probability is too complicated to be applied
in the real world. A dynamic programming for calculating this
critical probability was suggested by Kaplan [6]. But this
calculation is beyond the scope of this paper. Instead of
optimal critical probability, the breakeven probability, which
is calculated from long-run expected savings and investigation
cost, is used in this paper. Long-run expected savings may

be estimated from the historical data. The estimation can be
made by the method suggested by Duvall(g].

In this paper, it is assumed that the long-run expected
savings were given as an external input to the simulation
model.

The scope of this study is confined the comparison of the
relative effectiveness of the two cost variance investigation
methods. Whether or not a manager should use one of these
two methods is a separate guestion and is not the subject of
this study. There are several necessary assumptions underlying
the two methods. These assumptions are not tested in this

study.

D. METHODOLOGY

The approach taken in this paper to test the relative effec-
tiveness of these two models is to (1) examine the procedures
of each of the two methods by studying relevant articles,

(2) simulate these procedures, (3) incorporate these procedures

15
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into the simulation model, (4) transfer this model to com-
puter program and run the program and (5) analyze the results.
This study is organized into five chapters; Chapter One
presents the background and issues involved in cost variance
investigation decisions, Chapter Two describes the detail of
the two methods to be studied. Chapter Three presents the
details of the simulation model, Chpater Four describes the
results of the computer simulation for various cases, and
finally, Chapter Five shows the conclusion derived from the

analysis of Chapter Four data.

16




II. DESCRIPTION OF COST VARIANCE INVESTIGATION METHODS

A. MARKOVIAN CONTROL METHOD (2]

1. Specification

The process operates in one of two possible conditions,
i =1,2, of which condition 1 means that the process is in-
control and condition 2 means that the proces is out-of-con-
trol. If in control, the process may deteriorate into the
out-of-control condition in the next period with a constant
probability (l1-g). But, once out~-of-control, the process
continues to operate in that condition unless investigated
and corrected. This is summarized in the following Markovian

process "Transition Matrix":

1 g (1-9)
(2-1)

The functioning of the process generates, in each
period, say j, a cost xj, which is a random variable, with
its probability distribution function Fi(t), depending upon

the operating condition, i, of the process.

Pr{xj < x|i} = Fi(x) i=1,2
(2-~2)

E(x|i) = My

17




The transition takes place before a cost is gener-
ated, so that cost reports provide information about the
current status of the process.

On receiving a cost report, the manager faces a
choice. A first alternative is to regard the process as
having gone out-of-control, and so to incur a fixed discre-
tionary investigation cost, I, which will reveal what, if
anything, is wrong with the process. It is assumed that if
the process is found to be out-of-control, it is reset to the
in-control condition with a constant correction cost K, but
if the process is found to be in-control, it is left to
operate as is.

In the latter case, the manager is said to have com-
mitted an type I error (incurring a cost when it was not
necessary) .

The second alternative for the manager is to regard
the process as being in-control, allowing it to run without
intervention for one more period. 1In this case, the manager
takes the risk of committing a type II error, that is, not
investigating and correcting the process when, in fact, it
was out-of-control.

2. Control Policy: A Single Critical Limit for the
Cost Variance

Consider the class of control policies in which the
manager bases his decision between "investigate" and "don't

invegstigate” on whether the actual cost X exceeds some

constant value x. Then the conditional probabilities of

18




committing type I and type II errors are constant and are,

respectively, as follows:

Pr{Investigate|in-control} Pr{X>x|i=1}

1 - Pr{X <x[i=1} (2-3)

= 1 - Fl(x)
Pr{Don't investigate|out-of-control} = Pr{X <x|i =2}
= F,(x) (2-4)

However, the unconditional probabilities of type I
and type II errors do change with time, for they depend upon
the probabilities of the process being in-control and out-
of-control, which in turn, depend upon the number of periods
elapsed since the last managerial intervention.

If the process is in-control when the report is pro-
duced, then, no matter what action the manager chooses, the
process will start the next period in the in-control condi-
tion with probability 1. 1If, on the other hand, the process
is out of control when the cost report is produced, then it
will start the period in the out-of-control condition with
probability equal to the probability of a type II error,
Fz(x), which is constant. Thus, the effect of manager's
control action can be described by the following Markovian

"Control Matrix":

19




1 2 ¢—condition of the
process after
1l 1 0 "oontrol” is
exercised (2~5)
2 l-Fz(x) 1-F2(x)

[

oondition of the process when the cost
report is produced

Therefore, we may define a new Markov process which
combines the process Transition Matrix (2-1) and Control
Matrix (2-5). We refer to it as the associated "Controlled

(Markov) Process".

g (1-g) 1 0
0 1 l-Fz(x) Fz(X)
Transition Matrix Control Matrix
l-(l-g)Fz(x) (l-g)Fz(x)
= (2-6)
l-Fz(x) Fz(x)

Controlled Process Transition Matrix

The steady-state probabilities ni(x) (i =1,2) of

the controlled Markov Process (2-6) are given by:

mylx) = (1-g)ny (X)F,(x) + 7, (x)F,(x) (2=7)
wl(x) +1r2(x) = 1
: 1-F,(x) (1-g)F, (x)
T (%) = I'Ta.—z-ﬁ)-; nz(x) = W (2-8)
20




As may be seen from Figure 2-1, nl(x) and nz(x) are
the steady state probabilities for the states in which the
process finds itself at the end of the managerial control
(or, equivalently, at the start of a period of operation).
They are not the same as the steady-state probabilities si(x)
(i =1,2) of the states generating the cost reports. Proba-
bilities sl(x) and sz(x) are easily found by applying the
process transition matrix (2-1) the the steady state vector i

T (X), Ty(x);

sl(x) = g l(x)
(2-9)
sz(x) = (1-g) l(x) + 2(x)
1l -ngix)
o— —0 >
Controlled Process $ Controlled
state state state
Process Control
transition transition

Figure 2-1: A Controlled (Markov) Process

3. The Expected Cost of Operating Controlled Process

The total expected cost per period is the sum of the 7
expected cost per period of (i) operating, (ii) investigating,

and (iii) correcting the process.

L ” 21 ‘7 | ‘J
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From Equations (2-2) and (2-9), the expected cost per

period of operating the process equals:

co(x) = ulsl(x) + uzsz(x)

HygTy (X)) + gy (l=g)my (x) + “z"z(X)

Wy = wl(X)gﬂu

where

The investigation costs are incurred in the event
that the cost report X > x. In the steady state, the uncon-
ditional probability of the event X > x is readily computed

using Equations (2-3), (2-4), and (2-9).

A

Pr(X > x} Pri{X >x[i.=l}sl(x) + Pr{x >x{i.=2}sz(x)

(l-g) 1 -Fz(x)
1 - ng(x)

1 —Fl(x) gnl(x) +

nl(x){l - gFl(x)} (2-11)

Hence, the expected cost per period for investigating

the process equals:

Finally, the correcting costs are incurred in the

event that the cost report X > x and the process is out of

22
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control. In the steady state, the probability of such an
event is simply the second term in Equation (2-11), so that

the expected cost per period of correcting the process equals:

(1-9) (1 -F, (x)]K

Cxlx) = T = oF, (%) = mx)(l-g)k  (2-13) ;

Thus the total expected cost per period of operating
the controlled process is the sum of (2-10), (2-12) and (2-13),

which can be expressed as follows:

C(x) = C_(x) + Crx) + Cylx)
= uy + 7 (%) {{1-g) (R+I-gau) = gI{F, (x)}
= u, *+ mx){a - bFl(x)}, (2~-14)
where

a = (l-g)K + I - gau E o,
(2-15)

b = gI (I =0 is uninteresting).

4. Optimal Policy

A natural question at this point is: "what control
limit x* is optimal?" Of course, the x that minimizes the
total expected operating cost (C(x)) is the optimal control
limit. To get the optimal value of x, the first order deriva-
tive can be derived from Equation (2-14):

dnl(x)

ac(x) —3—(a =bF (X))} - br (x) £ (x) (2-16)

dx

23




dnl(x) —\l-g)fz(x)
dx = - ‘2 (2-17)
tl-ng(x)}

The cost C(x*) is an extremum x* such that dC(x*)/dx ]

= 0. That is:

(l-g)fz(x*){a-bFl(X*)}+bfl(x*){l-Fz(x*)}ﬂ-gF (x*)}= 0 (2-18)

2

There are two possibilities; either x* is such that
{a-bFl(x*)} = 0 and {l-Fz(x*)} = 0; in this case nl(x*) = 0,

that is, the process runs uncontrolled forever. Or, since

all other terms in Equation (2-18) are positive, x* must lie

in the open interval on which;

{a -bFl(x*)} < 0, that is, Fl(x*) > (2-19)

oy

Intuitively we can understand that the optimal control
limit should be a certain point where x* > My And for the
x such that x < x*, then C(x) > C(x*), also for the x such
that x > x*, then C(x) > C(x*). Therefore we can get optimal

control limit x* by trial and error.

B. BAYESIAN CONTROL METHOD [3]

In the Markovian control, the past cost reports don't have
any effect on the current period's cost investigation decision.
But in the Bayesian control it affects the current period's
decision.

1. Characteristic

This method was first suggested by Bierman, Fouraker

and Jaedike {[1]. The methodology was first developed by

24




Duvall [6] and later was expanded by Dykman ([3]. This method
is based on the Bayesian decision theory. The subjective

prior probability can be converted to the posterior proba-

bility by additional information of periodic cost report,
according to the Bayes' Theorem.

A two state, two action problem is assumed.

1t in-control

6,52 out~of-control
a,: investigate
a,: do not investigate

The decision on whether or not to investigate is
based on reports of incurred costs. It is assumed tha“ in-
curred costs are reported on a periodic basis. Thus, a do-
not-investigate action implies that the activity is continued
at least until the next cost observation is available. Aan
additional assumption at this point is that a full investiga-
tion will always reveal the cause of an out-of-control action,
which can then be immediately corrected.

The cost of investigation is assumed to be some con-

stant I, and the present value of the savings obtainable from

an investigation when the activity is out of control is L

(L = Actual savings from the process-—correction cost K) where
L > I; otherwise an investigation would never be warranted.
Values of L must be estimated before this method can be made
operational.

Once L and I have been estimated, the payoffs in costs

for the investigation problem in two~state form are as given
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in Table 2-1. Typically these values will be of a magnitude
such that the decision maker is willingto act on the basis

of the expected values.

Table 2-1

General Payoff Matrix

state
el: in-control 62: out-of-control
ay: investigate I I-L
a,: don't 0 0
investigate

To start, the process is assumed to be in a state of
control but may move out-of-control with probability (l1-g).
The process cannot shift from the out-of-control state to the
in-control state. As in the Markovian control method, this
situation can be represented by a Markov process with transi-

tion matrix:

1 2
1 g l-g
(2-20)
2 0 1

2, Control Policy: Single Critical Probability for
the Posterior Probability of the In-Control State

Assume now that the decision maker can and

does have a (prior) subjective probability mass
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function, call it fo’ over the states. Let the probability

of state ej in any period n (n = 1,2,...) be denoted by fn(ej)‘
Thus the initial probabilities are given by f (ej).

Under these assumptions, the "investigate" action
should be taken at some stage n if its expected cost is less

than the expected cost of delaying investigation. That is:
E(C(a;,0)] < E[Cla,, )] = 0

where C is the payoff random variable and 8 is the state

random variable. Substituting this means that
C[fn(el)] + [I-L][l-fn(el)] < 0 (2-21)

An investigation is immediately called for if C[fn(el)]
+ [I-L][l-fn(el)] is negative. In each future period n
(n =1,2,...) a cost level x is observed. Suppose that this
cost level is more likely to occur when the process is out of
control (see Figure 2~2). This increases the probability o’
state 85 at the expense of state el. If the probability attach-

ing to the 6. is increased enough, then the expected loss from

2
investigation will be less than the expected loss from not
investigating and action a, is preferred.

By the characteristics of the transition from in-control
| to out-of-control, the state probabilities should be adjusted.
iH It can first be adjusted to reflect the effect of the transi-

tional probabilities (2-20).
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out-of -control

E(X]8,) X E(X]9,)

Figure 2-2: Cost Distributions

Assuming that if transition occurs before a cost

observation, the results are:

Ealey) = 9f,.108y)
(2-22)

' -
fn(ez) (1 g)fn_l(el) + fn_l(ez)

These are illustrated in Figure 2-3.

Then using these adjusted probabilities as prior
probabilities of the period n, the revised probabilities
given a cost report X can be obtained by Bayes' Theorem,
£ (;]e.)f'(s.)
= x) = X Jl.n ]
fn(ej) fn(ejlx) 3

L

(2-23)

3 Eylxle )£ (0

j=1

Note that state el cannot occur in period n if it
did not exist in period n-1 and out of control state is

assumed to be discovered if an investigation is made.
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state in period probability state in period revised state
n-1 and state of state n and state probability
probabiiivy change probahility

fx(xlel) £.(8)) = fn(el|x)

fX(xlez) £.(8)) =fn(02[x)

£100,) (1-g) £ _;(8;)
+ £, _1(8,) = £1(8,)

Figure 2-3: Illustration of Bayes' Theorem
for Revised Probability

In order to avoid the expected value calculations each
time a cost value is observed, the breakeven probability that
equates the two actions can be obtained. To do so, let the
revised state probability for state 8, after n cost observa-
tions be given by fn(el). Thus fn(ez) =1 - fn(el). Then

solving for the expected costs of investigation gives:
E[C(a,8)] = Cfn(el) + [I-L]1[1 -fn(el)] (2-24)

If this expectation is less than zero, the process

is a candidate for investigation; while it exceeds zero, the
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process is not. Setting the expectation given by Equation

(2-24) equal to zero and solving the equation gives the

breakeven value, or the indifferent point:

fn(el) = — (2-25)

For example, we assume that L equals 12,000 and T
equals 2,000, then the breakeven probability is 0.83
((12000-2000) /12000). This breakeven probability is denoted
by g in this paper. 1If fn(el) < q, an investigation is sig-
naled, otherwise it is not. Note that the breakeven value
is independent of stage n and therefore relevant to all time i

periods.

C. DISTINCTION BETWEEN TWO METHODS

The major distinction between the two methods are the
criteria of whether or not to investigate the process. The
Markovian Control method relies on the critical limit (x*)
to decide whether or not to investigate the process. The
process is investigated simply because the reported cost ex-
ceeds a critical value x*; the history of cost reports is for-
gotten. The critical limit can be obtained by trial and
error. On the other hand, the Bayesian Control method relies
on the critical probability (g) to decide whether or not to
investigate the process. In this method, the manager keeps
track of the probability of the process being in-control at
the time of the next cost report; the periodic cost reports

serve to update this probability and the process is investigated
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whenever the updated probability is less than the critical
probability.

Although each method has a different criterion for the
investigation of the process, both methods aimed to minimize
long run expected cost. Thus we have to resort to the long
run expected cost in comparing the effectiveness of the two
methods. An analytical approach to the comparison of effec~
tiveness of the two methods was presented in the article "Cost
Variance Investigation: Markovian Control versus Optimal Con-
trol®" [7], by Dittman and Prakash in 1979. In this article
they concluded that "it is observed that Markovian Control
(Dittman-Prakash policy) performs almost as well as the Opti-
mal Control (the best Bayesian policy) unless the in-control
cost has substantially greater dispersicn than the out of
control® [7: p. 358]. The best Bayesian policy means that the
process is controlled by optimal critical probability (g¥*),
which can be obtained from solving dynamic programming sug-
gested by Kaplan, rather than controlled by the breakeven 4

probability (q) (which is simpler than optimal critical

probability). Dittman and Prakash assumed that the Optimal
Control was the best control method under the criterion of
minimizing long run expected cost. But Markovian Control is
less complex than Optimal Control to apply. Under these
assumptions they measured the opportunity cost of simplicity

in the Markovian Control.

This analytical approach did not do anything with the

actual periodic cost report. How the actual cost reports
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behave against the theoretical control criteria can be
examined only by an empirical study (simulation). Cost re-
port in a period is a random sample from the defined proba-
bility distribution and the manager should decide whether or
not to investigate the process by this random sample.

In this paper Bayesian Control with the breakeven proba-
bility is compared with the Markovian Contrcl. The two methods
are selected for comparison for the following two reasons:

(1) both are easy to apply in a realistic setting and there-~
fore the opportunity cost of simplicity can be glossed over;

(2) for research has not been done to compare the relative

effectiveness of the Markovian Control and the breakeven criti-

cal probability Bayesian method.
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III. DESCRIPTION OF THE SIMULATION MODEL

A. DECISION~MAKING ENVIRONMENT

The preceeding chapter described the Bayesian and the
Markovian decision models. However the relative effective-
ness of the two models remains to be tested. Different
decision-making environments, such as cost savings from an
investigation, different distributions of cost performance
under the in-control or out-of-control state, etc., may have
different effect on the usefulness of the two decision models.

In the Markovian Control model the process cost was ex-

pressed by Equation (2-14):

C(x) = wu, + m (x){a~bF, (x)},
where

a = (l=-g)K + I - gay,
and

b = gI.

If the process is never investigated, the long run ex-
pected process cost per period is 1P (the mean cost of out~
of-control state). Therefore in the above equation, the term

nl(x){a -bFl(x)} = g(x) should be negative for control to be

worthwhile. Since Fl(x) can never be greater than one and

"l(x) can never be negative, if the value a/b is such that




T

a/b > 1.0, the term s(x) is necessarily positive. It means
that the optimal policy for this process is "never investi-
gate". On the other hand, if the value of a/b is much smaller
than -1.0, the ootimal policy is "always investigate". Thus,
the relevant range for the value of a/b should be less than
one but not too much less than -1.0.

In the Bayesian Control model, the control point (or
breakeven probability) was expressed by Equation (2-23) (555).
In the same context, the extreme values of breakeven proba-
bility (close to zero or close to one) are not proper for
comparison with the Markovian Control model.

B. PROBABILITY DISTRIBUTIONS OF IN-CONTROL AND OUT-OF-~

CONTROL STATES

In order to evaluate the relative effectiveness of the
two models under study, we can consider various combinations
of probability distributions of in-control and out-of-control
states. For example, dispersion of in-control state can be
larger or smaller than or the same as that of the out~of-
control state.

The probability distributions assumed in this simulation
study are as follows.

(a) Egually dispersed in-control and out-of-control states
with low degree of overlap--in this case, the mean cost of an
in-control state is assumed to be $100 with a standard devia-
tion of $§5, and the mean cost of an out-of-control state is
assumed to be $120 with a standard deviation of $5.

Figure 3-1 depicts this situation.
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out-of-control state

in-control state
-~ N(120,5)

N(100,5) o

85 100 120 135

Figure 3-1: Equally Dispersed Low Overlap

(b). In-control state less dispersed than out-of-control
state~-in this case, the mean cost of an in-control state is
assumed to be $100 with a standard deviation of $5 and the
mean cost of an out-of-control state is assumed to be $120
with a standard deviation of $30.

Figure 3-2 depicts this situation.

in-control state cut-of-control state
N(100,5) N(120,30)

30 100 120 210

Figure 3-2: In-Control Less Dispersed
Than Out-of-Control

(c). In-control state more dispersed than out-of-control

state--in this case, the mean cost of an in-control state is

assumed to be $100 with a standard deviation of $30 and the
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mean cost of an out-of-control state is assumed to be $120

with a standard deviation of $5.

Figure 3-3 depicts this situation.

out-of~control state
in-control state N (120, 5)
N(100,30)

10 ' 100 120 190

Figure 3-3: 1In-Control More Dispersed
Than OQut-of-Control

(d) . Equally dispersed in-control and out-of-control states
with large degree of overlap--in this case, the mean cost of
an in-control state is assumed to be $100 with a standard
deviation of $30 and the mean cost of an out-of-control state
is assumed to be $120 with a standard deviation of $30.

Figure 3-4 depicts this situation.

in trol state out-of-control state

N(120,30)
N(100,30)
"~ /‘/

10 100 120 210

Figure 3-4: Equally Dispersed Large Overlap
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For the following two cases, the probability distribution
of the out-of-control state is assumed to have a gamma dis-
tribution. The gamma distribution is not symmetric, it is
skewed to the left from the mean (Figure 3-5). The gamma
distribution is decided by two parameters (y,A). Since the
parameter y affects the shape of the distribution, we can
make various shapes by selecting proper y according to the
characteristic of the cost process under consideration. For
some situations, the use of gamma distributions could be more

practical and more similar to the actual process.

Y -]l -
0.5 A (A )y 1 e AX
Y
L = X
Véy(x) AZ

P L,

1 2 3 4 5 6 7 8 9 10

Figure 3-5: Gamma (y,l) Distributions

(e) . Normal distribution with small dispersion in in-control
state and gamma distribution in out-of-control state--in this
case the in-control state is assumed to be a normal distribu-
tion with a mean of $120 and » equal to one. Since parameter
y affects the shape of the gamma distribution, the shape is
approximately symmetric when y exceeds 50. To simulate a
process skewed to the left, two is assumed for the parameter
y and then it is transformed to the mean of 120. The formula

chosen for the transformation is Y = 85 + 17.5X; where X is a
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Gamma (2,1). Then the mean of Y is 120 and the variance of
Y is 612.5 (standard deviation is 24.75). We can make differ-
ent shapes of Gamma (2,1) with various mean and variance by
adding and multiplying Gamma (2,1). For convenience, G(120,1)
refers to the transformed distribution in this paper.

Figure 3-6 depicts this situation.

in-control state
N(100,5)

out-of-control state

o G(120,1) = G(2,1) x17.5 + 85

85 100 120 170

Figure 3-6: Narrow Normal In-Control and
Gamma Out-of-Control

(€). Normal distribution with large dispersion in the in-
control state and gamma distribution in the out-of-control
state--in this case the in-control state is assumed to be a
normal distribution with a mean of $100 and a standard devia-
tion of $30 and the out-of-control state is assumed to be the
same as case 5.

Figure 3-7 depicts this situation.

out-of~caontrol state
in-cantrol state G(120,1) <= G(2,1) x 17.5 + 85

N(100,30)

10 100 120 190

Figure 3-7: Wide Normal In-Control and
Gamma Out-of-Control
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C. BOUNDARY CONDITIONS BETWEEN OUT-OF-CONTROL STATE AND
IN-CONTROL STATE

We can further consider different boundary conditions in
which the status of a cost process at the beginning of each
period is assumed. Both the Bayesian Control model and the
Markovian Contrcl model assume that an investigation always

uncovers the reason why the process has deteriorated to the

out-of-control state and that the causal factor is corrected.
However, we can suppose a boundary condition between out-of-

control and in-control state. If we investigate the process

when the process is in control, we may or may not know to

what degree the process has transferred into the out-of-
control state. If an investigation simply reveals whether the
process is in-control or ocut-of-control but does not deter-
mine to what extent the process is drifting toward out-of-
control state, the probability of the in-control state doesn't
return to one at the beginning of the next period by an inves-
tigation in the preceeding period. 1In other words, the pro-
cess will operate one more period in the same condition as

at the end of the preceeding period, i.e., it is drifting into
out-of~control state to some extent. Thus the probability

of the in-control state at the beginning of the next period
may not return to one; say condition (2).

On the other hand, we can also suppose that the above
boundary condition cannot exist and that an investigation al-
ways reveals the status of the cost process and the probability
of the in-control state is returned to one after an investiga-

tion; say condition (1).




D. SAVINGS FROM AN INVESTICATION

Since L, the loss for failing to conduct an investigation
or savings from a productive investigation, is specifically
considered in the Bayesian Control model but not in the
Markovian Control model, this study also examines the effect
of varying the value of L on the effectivenes of each model.

The three values selected for this study (25, 45, 100) are
admittedly arbitrary, but the purpose is to identify the
direction of the change in effectiveness, not the "correct”
and "efficient" absolute number of each model, which really
does not exist except by subjective estimation. When consis-
tent patterns in model effectiveness are discovered, additional

values of L are simulated to ascertain the pattern.

E. SUMMARY OF CONDITIONS SIMULATED

Under each of the two boundary conditions there are 18
different combinations of cases (data points) according to
the assumptions made on different cost distributions and sav-
ings. The 18 data points are summarized in Table 3~1.

The values for the investigation cost (I), corxrrection
cost (K), transition probability (g) and mean differential
cost (Au) are assumed to be 15, 5, 0.9 and 20 respectively in
all cases. Calculated value of a and b are -2.5 and 13.5,
respectively. Therefore the value of a/b (-0.185) is not an

extreme case.

F. SIMULATION PROCEDURE
The simulation procedure is summarized in Appendix A in

the form of computer program flow chart. The computer program




Table 3-1

18 Different Data Points Considered

I=15 K=5 g=0.9

1 -cuntril N(100,5) N(100,30)
s 4
out- 9
of
control L =25 L = 45 L = 100 L =25 L =45 L =100
N(100,5) N(100,5) N(100,5) N (100, 30) N(100,30) | N(100,30)
N{120,5) N(120,5) N(120,5) N{120,5) N(120,5) N(120,5) | N(120,5)
L=25 L =45 L = 100 =25 L=45 | L=100
‘ N(100,5) N(100,5) N(100,5) N(100,30) | N(100,30) | N(100,30)
i
N(120,30) | N(120,30) | N(120,30) | N(120,30) N(120,30) | N(120,30) | N(L20,30)
L =25 = 45 L=100 L =25 L =45 L=100
N(100,5) N(100,5) N(100,5) N{(100,30) | N(100,30) { N(100,30)
G(120,1) G(120,1) G(120,1) G(120,1) G(120,1) G(120,1) | G(120,1)
L=25 L =45 L=100 L=25 L = 45 L=100
N: Normal distribution G: Gamma distribution
G(120,1): Refers to G(2,1)x17.5 + 85
is included in Appendix B. One hundred periods are simulated

in each sample and 50 samples are used to estimate the mean
differential cost (§D) between the two decision models. Al-
ternatively, one can interpret that the simulation result is
based on 5000 iterations, which is more than enough to guaran-
tee stability of the simulation result and provide the basis
for the evaluation of the long-term effectiveness of the deci-

sion models under study.
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IVv. DISCUSSION OF RESULTS

Results of the implementation of the simulation model
for the data points and conditions, that were explained in

Chapter III, are summarized in Table 4-1.

In Table 4-~1, the positive value of ib means that the
incurred cost for Bayesian Control is less than that of
Markovian Control and the negative means the converse. To
test whether or not the values are statistically significant,
Table 4-2 shows the 95% confidence interval for each value
of §b. We can say that the value of fb is statistically signi-
ficant if the confidence interval doesn't include zero. Other-
wise, we can't say that. Furthermore, we have to compare the
value of i; with the mean difference cost between in-control
and out~of-control state ($20 in this study). This comparison
enables us to see the relative magnitude of the value of ib.

We now can look for significant patterns in the tabulated
results. A relative magnitude of differential cost between
the two control methods can be used to figure out whether or
not the differential cost is practically significant. The
differential costs of the two control methods are affected
by the mean cost difference of the two states (Au) to some

extent, but not affected by the absolute amount of a cost

report.
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Table 4-1

Simulation Results

(a) N(100,5) N(120,5)

Condition (1) Condition (2)
Data Savings M P = RM. Sz s So
Points (L) c << H o@w B Ry %
1 25 112.50 0.40 0.176 0.9 0.262 0.175 0.9 0.260
2 45 112.50 0.67 0.210 1.1 0.256  0.209 1.0 0.257
3 100 112.50 0.85 0.185 0.9 0.284  0.178 0.9 0.284

(b) N(100,5) N(120,30)

25 112.65 0.40 0.996 5.0 0.708 0.831 4.2 0.762
45 112.65 0.67 -0.249* 1.2 0.941 -1.028 5.1 1.180
100 112.65 0.85 -3.915 19.6 1.020 -4.911 24.6 1.169

(c) N(100,30) N(120,5)

25 117.25 0.40 1.902 9.5 1.204 2.029 10.1 1.342
45 117.25 0.67 2.037 10.2 1.141 2.168 10.8 1.269
100 117.25 0.85 2.481 12.4 1.023 2.613 13.1 1.151

(d) N(100,30) N(120,30)

10 25 130.95 0.40 0.580 2.9 1.043 1.300 6.5 1.123
11 45 130.95 0.67 1.590 8.0 1.110 1.964 9.8 1.136
12 100 130.95 0.85 0.283* 1.4 1.094 -0.023* 0.1 1.246

(e) N(100,5) G(120,1)

13 25 111.35 0.40 0.366 1.8 0.734 0.434 2.2 0.842
14 45 111.35 0.67 -0.645 3.2 0.822 -1.303 6.5 0.972
15 100 111.35 0.85 -4.266 21.3 0.938 -4.754 23.8 1.230

(£) N(100,30) G(l20,1)

16 25 124.50 0.40 1.297 6.5 1.199 2.313 11.6 1.297
17 45 124.50 0.67 2.504 12.5 0.980 3.426 17.1 1.113
! 18 100 124.50 0.85 2.315 11.6 1.126 2.791 14.0 1.305
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Table 4-1 (Cont'd)

>

Estimate of ib; Arithmetic mean of incurred cost of
Markovian Control minus incurred cost of Bayesian
Control, derived from fifty mean (?b) of one hundred

iterations.

R.M. (%): Relative magnitude of §£ to the mean difference
cost between in-control and out-of-control state.

X X
(—E_x100 = 2x100)
My=H 20
2 "1 s)_(.
Sz : Estimated standard deviation of ED (Sf = —:g)

X5 D /39




Table 4-2

95% Confidence Interval of §5

Data
Points Conditions (1) Condition (2)
1 0.101 - 0.251 0.101 - 0.249
2 0.137 - 0.283 0.136 - 0.282
3 0.104 - 0.266 0.097 - 0.259
4 0.795 - 1,197 0.614 - 1.048
5 -0.528 -~ 0.031* -1.363 - -0.692
6 -4.218 - -3.611 -5.243 - -4.,578
7 1.544 - 2.260 1.647 - 2.411
8 1.698 - 2.376 1.807 - 2.529
9 2.177 - 2.785 2.285 - 2.941
10 0.283 - 0.877 0.980 - 1.620
11 1.274 - 1.906 1.641 - 2,287
12 -0.028 - 0.594* -0.377 - 0.332*
13 0.157 - 0.575 0.194 - 0.674
14 -0.879 - -0.411 -1.580 - -1.026
15 -4,533 - =3.999 -5.104 - -4.404
16 0.956 - 1.638 1.950 - 2.676
17 2.225 - 2,783 3.109 - 3.743
18 1.995 -~ 2.635 2.420 - 3.108

t value (95%, 49 degrees of freedom): 2.012

* data cell that is statistically indifferent




A. EQUALLY DISPERSED IN-CONTROL AND OUT-OF~CONTROL STATE
WITH LOW DEGREE OF OVERLAP (N(100,5),N(120,5))

This case included data points 1,2,3. Bayesian Control
performed better than Markovian Control in all the data
points of this case. But the relative magnitudes of differ-
ential cost of the two methods were small. The greatest
magnitude in Table 4-1(a) was 1.1 percent of the mean differ-
ence cost between the two states. Therefore, it is hard to
conclude that the one method performs better than another.

Dispersion of the distribution of states can be interpreted
as a degree of uncertainty in a probability distribution. The
degree of uncertainty in this case is relatively small for
both states. It means that the chance of a manager committed
to type I, or type II error is very low. Therefore small
magnitude of differential cost of the two methods can be
attributed to that reason.

B. IN-CONTROL STATE LESS DISPERSED THAN OUT-OF-CONTROL STATE

(N(100,5),N(120,30))

This case included data points 4,5,6. This case is more
likely to occur in the real world. It is reasonable that the
outcome is an in-control state is more certain than that of
an out-of-control state,

In this case, Markovian Control performed better than
Bayesian Control for larger values of L, but the reverse is
true for lower values of L. In the medium range, however,

the result is inconclusive, as indicated by the *. The rela-

tive performance of the Markovian Control compared to the

Bayesian Control was bettered as the amount of savings




——

increases. To see the trend of the differential cost be-
tween the two methods, differential costs for three addi-
tional values of savings were obtained. Figure 4-~1 shows

this result.

X M
+24
1.0
~0.42 .
0...'.........\_0..25......-...
T~
=27 -2.93
" L _,-3.91
25 35 45 65 85 100 (L)
Figure 4~1: Relationship Between ib and L(B)

The relative magnitude of Markovian Controls better per-
formance was relatively large in the larger values of L; it
was 19.6% under condition (1) and 24.6% under condition (2).
On the other hand, the relative magnitude of Bayesian Control's
better performance in the lower values of L was around 5%.

Therefore, we can say that the Markovian Control performs
better than Bayesian Control in this case, especially when
the value of L is large.

C. IN-CONTROL STATE MORE DISPERSED THAN OUT-OF-CONTROL STATE

(N(100,30),N(120,5))

This case included data points 7,8,9. This case is less
likely to occur in the real world.

In this case, the Bayesian Control performed better than

the Markovian Control in all the data points. And the relative




performance of the Bayesian Control compared to the Markovian

Control was bettered as the amount of savings increases.

This trend is the reverse of Case B discussed above. Figure (

4-2 shows the relationship between X. and L.

D
+
r . 2.48
T 1.972-04 2.26  2.44
X 1.90 1-97 . |
+2¥ .‘__—.o——-‘—_—_—__ :
ol . e
=2t
4 25 35 45 65 85 100 (L)

Figure 4-2: Relationship Between §b and L(C)

The relative magnitudes of Bayesian Control's better
performance ranged from 9.5% to 13.1%.

Therefore, we can say that the Bayesian Control performs

better than the Markovian Control in this case.
D. EQUALLY DISPERSED IN-CONTROL AND OUT-OF-CONTROL STATE

WITH LARGE DEGREE OF OVERLAP (N (100,30),N(120,30))

This case included data points 10,11,12. 1In this case,
the Bayesian Control performed better than the Markovian
Control in the middle range of L values simulated. However
the advantage of the Bayesian Control model appears to de-
crease as the assumed value of L gets higher or lower.
Figure 4-3 shows the relationship between §; and L.

The relative magnitude of Bayesian Control's better per-

formance was greatest in the medium values of L; it was 8%
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Figure 4~3: Relationship Between §b and L (D)

and 9.8% respectively under the two boundary conditions

assumed. Therefore, the results of this case is somewhat

inconclusive.

E. NORMAL DISTRIBUTION WITH SMALL DISPERSION IN-CONTROL
STATE AND GAMMA DISTRIBUTION IN OUT-OF-CONTROL STATE
(N(100,5),G(120,1))

This case included data points 13,14,15. In this case,
the Bayesian Control performed better than the Markovian
Control in the lower values of L and the Markovian Control
performed better than the Bayesian Control in the medium
and larger values of L. Figure 4-4 shows the relationship
between §b and L.

The relative performance of the Markovian Control compared
to the Bayesian Control was bettered as the values of L

increases.

The relative magnitudes of Bayesian Control's better per-

formance were 2% in the lower values of L and those of Markovian
Control's better performance were around 5% in the medium values

of L and around 22% in the larger values of L.
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Therefore we can say that the Markovian Control generally
performed better than the Bayesian Control in this case.

F. NORMAL DISTRIBUTION WITH LARGE DISPERSION IN-CONTROL
STATE AND GAMMA DISTRIBUTION IN OUT-OF-CONTROL STATE
(N(100,30),G(120,1)) .

This case included data points 16,17,18. 1In this case,
the Bayesian Control performed better than the Markovian
control in all the data points. The relative performance
of the Bayesian Control compared to the Markovian Control
was best in the medium values of L. Figure 4-5 shows the
relationship between ﬁb and L.

The relative magnitudes of Bayesian Control's better per-
formance were around 9% in the lower values of L, around 15%

in the medium values of L and around 12% in the larger values

of L.
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We can say that the Bayesian Control performed better

than the Markovian Control in this case.

G. COST REPORTS OF THE PROCESS

As a by-product of the simulation, a mean of cost reports
derived from the 5000 iterations was calculated for each case.
Cost reports depend on the combination of cost distribution 1

of the two states. Table 4~3 shows those results.

Table 4-3

Means of Cost Reports

In- Qut-of ) i
Case Control Control Markovian Control Bayesian Control

State State Condition (1) Condition (2) Condition (1) Condition (2)

a N(100,5) N(120,5) 105.15 105.18 102.07 102.15
b N(00,5) N(120,%) 105.93 105.97 103.64 105.38
¢ N(100,30) N(120,5) 104.22 105.98 102.33 102.34
d N(100,30) N(12030) 105.31 107.37 104.07 105.04
e N(100,5) G(120,1) 106.09 106.20 103.98 105.93
£ N(100,30) G(120,1) 105.85 107.72 103.41 103.65
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In Table 4-3, we can see
slightly different from case
ports were not affected much
two states in the controlled

Cost differences between

cost reports and the mean of

that means of cost reports are j
to case. The mean of cost re- |
by the distributions of the

process.

the mean of Bayesian Control's

Markovian Control's cost reports

do not affect the differential cost of the two methods (§B) ;

in the simulation model of this paper.
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V. CONCLUSION

Suggestions to use statistical models to investigate cost
variances originated from the statistical quality control
techniques in industry. However, the application of statisti-
cal cost variance investigation methods is minimal so far.
Kochler reported that "in some general inguiry from some
prominent corporations, I was unable to find single use of
statistical procedures for variance control" [13]. He attri-
butes this paucity of applications not to the inherent in-
applicability of such procedures but to "the fact that ac-
countants have not recognized a conceptual distinction between
a significant and an insignificant variance" [13]). Therefore,
he proceeds to advocate the use of simple testing procedures.

The optimal cost investigation policy developed under the
Dynamic Programming approach (Kaplan) [6] obviously is diffi-
cult to apply. This study compares two statistical models
that are relatively easy to apply. The purpose of this study
is to examine the relative effectiveness of the Bayesian
Control model and the Markovian Control model under different
assumptions.

The results of the simulation study shed some light on the
relative effectiveness of two well developed models under
various conditions.

In Table 4-1 we can see that the values of §B were not

much different between condition (1) and condition (2) for




each data point. It means that whether or not the probability
of the in-control state returns to one after an investigation
doesn't have much influence on the performance of the two
models. In other words, different assumptions about the
probability of the in-control state a2fter an investigation

are not an important issue.

Based on the analysis of the simulation results, some
general conclusions regarding the relative effectiveness of
the two decision models can be made as follows:

(1) When the distributions of the two states (in-control
and out-of-control) are identical (Cases A and D), both deci=-
sion models are virtually equally effective, although the
Bayesian model has a slight edge when the distributions are
widely dispersed (Case D).

(2) When the distributions of the two states are different,
the effectiveness of a cost variance investigation decision
model seems to be dependent on the cost distribution of the
in-control state.

a) If the cost distribution of the in-control state is
normal with low degree of dispersion (Cases B and E}, the
Markovian Control model has a distinct advantage, especially
when the value of L is high. This finding is generally con-
sistent with Dittman and Prakash's conclusipn [71.

b) If the cost distribution of the in-control state
is normal but the dispersion is wider than that of out-of-

control state (Cases C and F), the Bayesian Control model
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seems to have an edge. One must admit, however, that Cases
C and F are less likely to occur in the real world.

{3) The assumed value of L plays a significant role in
the relative effectiveness of a decision model in all but
Case A. The larger the value of L is assumed, the better the
relative performance of the Markovian model in Cases B and
E (normal distribution with narrow dispersion for in-control
state). Curvilinear relationships are found in Cases C and
D (normal distribution with wide dispersion for in-control
state).

In summary we observed that the Markovian Control decision
model seems to be as effective as, if not better than, the
Bayesian Control model in those conditions more likely to be
found in the real world. However the Bayesian Control model
seems to be more effective in those special cases where the

cost distribution of an in-control state is widely dispersed.
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APPENDIX A

PROCEDURES OF THE SIMULATION MODEL

The procedures of the simulation model can be explained

by a step-by-step discussion of the flow chart of it (Figure

A-l). For the convenience of explanation a alphabetical label,

under which each procedure is explained, is attached to each

procedure.
(a) For the simulation the variables that should be esti-
mated outside of the model are given as external factors.

L(long run expected savings from an investigation) is not
an easy matter to determine. But it can be determined by the
method that was suggested by Duvall [8].

I(cost of investigation), g(the probability that in-
control state in the current period still remains in an in-
control state, in the next period), and K(correction cost
when the process is out-of-control state) can be estimated
from the past experience and historical data of the process.

Then the distributions of two states can also be deter-
mined by past experience.

For example, during the first iteration we assume that
L equals 60, I equals 15, K equals 5, g equals 0.9, the dis-
tribution of the in-control state is N(100,5) and the dis-
tribution of the out-of-control state is N{(120,5). This set

of numbers will be used in the discussion of steps that

follow for illustration purposes.
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Figure A-1l: Flow Chart
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(3)

Generate a randam number
fram the distribution of
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(b) Then we can assume that the process starts with in-
control state; probability of in-control state equals one
and the probability of out-of-control state equals zero. A
cost report comes from the process which was transformed by
the Transition Matrix from the prior period's states. There-
fore we can calculate the probability of the in-control state
of the process from which the cost report comes out.

For example, for period one,

Py = 1x0.9 = 0.9;
Pp = 1x0.9 = 0.9.
(c) In this step, we calculate the optimal control limit *

(Mc) for the Markovian Control by trial and error method.
Total cost of the process decreases as the value of the con-~
trol limit increases until a certain point. Beyond this point,
total cost of the process increases as the value of the con-
trol limit increases. Therefore we can find a point which
minimizes total process cost. It is a search process in the
computer program (see Appendix B computer program).

For example, the total cost of the process for a given
control limit of Markovian Control is as follows: suppose
that a given control limit is 110.

From Equation 2-15;

a = (l-g)K+ I -gdu = (0.1x5) + 15 ~ (0.9 x20) -2.5;

b = gI = 0.9x15 = 13.5.
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From Equation 2-8:

1 - F,(x) 1 - F,(110)
mx) = T=gF,® -~ T =0.9F,(110)"

Fz(llO) = Pr{(X < 110|N(120,5))

We can obtain the value of F(110) from the normal proba-
bility table. For computer simulation, we can obtain from
the IBM IMSL library by using CALL MDNOR (Z,PROB); where 2 is
a value of the standardized normal distribution ((X-u)/o =
(110-120)/5 = -2) and PROB is a value we want to get
(Fz(llo)) (91.

From the standard normal distribution table; Pr(Z < -2) =
0.0028 and by the same way F;(110) = Pr(X < 110|N(100,5)) =
0.9772. Then,

_ 1 ~ 0.0228 _

From Equation 2-14, the total cost of the process is;

C(1l10)

120 + 0.99767{(~2.5) - 13.5(0.9772)} = 104.3.

We can find the optimal control limit (MC) which minimizes

the total process cost by repeating the above steps.
For the Bayesian Control, the breakeven probability (q)

can be obtained from Equation 2-25;

= 0.75.

_ L-1I _ 60 -15
q L 80
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(d) Now we generate uniform random number by the random
number generator. In the IMSL library, GGUBS is available.

In this paper, however, the random number generator at the

Naval Postgraduate School is used because it is more efficient i

than GGUBS.
The procedures are as follow: [10]
CALL OVFLOW,

CALL RANDOM (SEED,R,A),

where SEED is a seed for the generation, R is a single array

variable that represents random numbers and A is a number that
represents how many random numbers we need.

For the numerical example to be discussed later, the
random number generated in this step is 0.86565.

(e) In this step, the stochastic process of the state can
be decided by using generated random numbers. If the generated
random number is less than or equal to the probability of the
in-control state, which was calculated in step (b), we decide
that the process is in-control. Otherwise, we decide that the
process is out-of-control.

In the example, the generated random number (0.86565) is
less than the probability of in-control state. Therefore, we
decide the process is in-control state.

(£) This step is the same as step (e), except it is for the
Bayesian Control. Since the investigating criteria of the

Bayesian Control are different from that of Markovian Control,

the probability of the in-control state of the Bayesian Con-

trol may be different from that of Markovian Control.

62 i




Therefore, the separated step was used in the simulation
model. In the example, the result is the same as step (e).

Then a cost report has to be generated for the simulation
from the distribution of the state which was decided in step
(e) and step (f).

(g} This step is applied when the status of the process
was decided as in-control state. A cost report is generated
from the distribution of the in-control state. The distribu-
tion of the in-control state is derived from the non~-controlla-
ble random deviation around the standard cost (ul). Therefore
it is appropriate to assume a normal distribution with standard
cost as a mean and a certain value derived from past experience 3
as a standard deviation.

A normal random number generator GGNML (9] is available
in the IMSL library. But in this paper, a normal random
number generator at the Naval Postgraduate School is used.

The procedures for generating normal random number are
as follow [10];

CALL OVFLOW

CALL NORMAL (SEED,Z,A);
where SEED is a seed to generate random numbers, Z is a
single array variable that represents random number and A is
a number that represents the number of random numbers to be

generated.

This randomnumber generator generates randomnumbers fromthe

standard normal distribution (Normal (0,1)). Therefore we
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have to transform the standard normal random number into the

random number which comes from the distribution we assumed.

% (standard normal) = X ; L

X(needed random number)} = u + 2o.

For example, we assume that a generated random number is
1.0, then the actual random number (NM) from the in-control
state (N(100,5)) is 105 (NM = 100 + 5x1.0 = 105). Accordingly
the cost report from the process is 105 for this period.

Then we have to decide whether or not we should investi-
gate the process based on the cost report. For this, the cost
report is compared to the calculated control limit (Mc). If
the cost report is less than the control limit (MC), we decide
that we should not investigate the process. Otherwise, we
decide that an investigation is desirable.

In this step, the process was in the in-control state.
Therefore if we don't investigate, it doesn't incur any cost
(CM = 0), otherwise it incurs an investigation cost (CM = I)
in addition to the cost report.

For example, we assume the calculated control limit is 110.
Then the cost report (105) is less than the control limit
(110) . Consequently, we decide not to investigate and the
incremental cost is zero.

If we investigate the process, we have to update the
probability of an in-control state after investigation, to

simulate the next period. Under Condition (1), which assumes
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that the probability of an in-control state returns to one
after an investigation, the probability of an in-control state
is assigned to be one. Under Condition (2), which assumes
that the probability of an in-control state doesn't return

to one after an investigation, the probabiilty of an in-
control state is assigned to be the probability of an in-

control state at the end of the current period.

Example: Investigation was conducted: Pﬁ = 1 (Condition
. P! = P+ 1 .
(1)); PM PM (Condition (2));
Investigation was not conducted: P' = P

M M
(h) This step is applied when the process was decided as

out-of-control. A cost report is generated from the distribu-

diatiieenssiie

tion of the out-of-control state. The distribution of the
out-of~control state is derived from the controllable deviation
around a certain expected value (uz). It may or may not be a 7
normal distribution. In this paper, normal and gamma distri-
butions were assumed.

If it is assumed that the out-of-control state is a normal
distribution, the procedure to obtain a random number is the
same as in step (qg). ﬂ

For example, if the distribution of the out-of-control

state is N(120,5) and generated random number from N(0,l1l) is

-1.0, then the random number to be used is 115 (NM = 120 +
5 x (-1) = 115). Accordingly the cost report is 115 for this

period. Then the same procedures as in step (g) are followed.

For example, the cost report (115) is greater than the

control limit (Mc = 110). Consequently, we decide to investigate
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the process. The process is in the out-of~control state.
Therefore, the incremental cost for this period is (u2 -ul)
- (I +K): Cy = {120 -100) - (15+5) = 0,

The cost of not investigating the process is Ho “Hy»
because the process incurs cost Mo instead of My In other

words, we lose the savings of u “Hys because we do not inves-

2
tigate the process.
For the gamma distribution, the gamma random number

generator GGMAR [9] is available in the IMSL library. The

gamma random number generator at the Naval Postgraduate School
is also used in this paper.

The procedures are as follow: [11] !

CALL OVFLOW

CALL GAMA (G,IX,X,N);
where G is a gamma distribution parameter v, IX is a seed
(integer), X is a single array variable that represents the
gamma random numbers and N is a number that represents the
number of random numbers to be generated.

The random numbers generated from these procedures are
the random numbers from the distribution of r(G,1l). But we
need random numbers generated from the assumed gamma distri-
bution. Therefore we need transformation.

For example, we assume a gamma distribution with the mean
of 120 and the parameter A of 1. Parameter Y = 2 and » = 1

are chosen as a proper shape for the out-of-control state

in this paper. Now we assume a random number generated from

| the r(2,1) is 1.50. Then the transformation is as follows:




=1 = g = H = o= g. = o
E(X) \ 1 2; Var (X) Az T = 2;
Y = 85 + 17.5X, then E(Y) = 85+ 17.5x2 = 120,
var(y) = (17.5)%2x2 = 621.5,
Standard Deviation of Y = 24.,75.

Therefore, a needed random number is 116.25 (85 + 1.75 x1.5).

(i) Now we turn to the Bayesian Control method. This step
is applied when the process was decided to be in the in-control
state.

The procedures to generate a random number from the dis-~
tribution of the in-~control state are the same as in step (g).

Once a random number (cost report) was generated, then we
have to figure out the posterior probability from the informa-
tion of the cost report. Using Bayes' theorem, the posterior

probability can be calculated as follows:

CIEREMC

14

f(ej) = f(ejlx) =

It~ N

lfx(xlej)fﬂ(ej)

J
3 ) -
where x is a cost report, fn(el) = gfn_l(el) and
] = - L} 1 -
£ (92) = 1 fn(el) (Figure 2-3).

We can obtain fx(xlej) from the normal distribution den-

sity function,

1 e-zz/z.

where f(z2)

X =,
0,
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By the above two equations, we can calculate fx(xlej)

and, in turn, we can calculate f(ej) for a given cost report

X.
For example, if the generated random number was 105,
then:
_ 105 - 100 _ - 105 - 120 _ _
Zl = — = 1.0, ZZ = /5 = 3.0,
fixlo)) = —=e /2 0.242,
V2m
£x]o,) = ——e /% = 0.0044,
r
_ (0.9) (0.242) =
£(6y) = To9y(0.242) * (0.I)(0.004dy - ©0-998

The revised probability of the in-control state (0.998)
is greater than the breakeven probability (0.75). Therefore,
we decide not to investigate the process and the incurred
incremental cost of the process is zero. The revised proba-
bility, f(sl), of this period becomes the beginning probability
of the next period (pé = Pgr = 0.98). Consequently, the prior
probability will be 0.882 (0.98 x0.9) before generating a cost
report for the next period.

If we had investigated the process, the probability of
the in-control state at the beginning of the next would have
been set to "one" under Condition (1) and to the revised proba-

bility of the current period under Condition (2) as the be-

ginning probability of the next period.
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For example: If an investigation was conducted;

1 (Condition (1)),

Y
]

i)

= PBR (Condition (2)}.

If an investigation was not conducted;
B BR®

(j) This step'is executed when the process is determined

to be out-of-control.

The procedures to generate a random number from the dis-
tribution of the out-of-control state are the same as in
step (h). We also calculate the revised probability by the
same procedures as in step (i).

For example, if the generated cost report was 116.25

(step (h)), then;

116,25 100 _ 5 55, 2, = 116-22 =120 _ _g.75

[
wn

1 e-10.56/2 = 0.0020

f(x[el)

<
- N
E}

e=0:36/2 . 4. 3011

f(xlez)

<~
N
=‘I

_ (0.002) (0.9) _
£(87) = Tooony 0.9y F (0. D (301D - ©0-036

Based on this result, we decide to investigate the‘process.
The incurred incremental cost of the process is (u2 —ul) -
(I +K). For example, Cp = (u, ~u) = (I +K) = (120 -100) -
{15 +5) = 0,

The steps explained above are the steps taken for one

iteration of the simulation run. Each iteration puts out two

69

iy e




incurred incremental costs for the process, one for the
Markovian Control (CM) and one for the Bayesian Control (CB).
To compare the costs of the two models, a differential

cost between the two models (CM -CB) is calculated for each

iteration.

The probability distribution of the calculated differ-
ential cost between the two models is unknown. However,
according to the central limit theorem; "as the sample size n
increases, the distribution of the mean X of a random sample
taken from practically any population approaches a normal
distribution" {1l2), we can assume the sample means (ib) of
the differential cost are normally distributed.

We can obtain enough sample means to test the significance
of the mean of sample means <§5) and can estimate the variance
of the same means (Sib)'

With these values, we can carry out the test of hypotheses

as follows:

XD = CM - CBI

— 1 B

X, = 7 1 X (n: number of iterations in each
i=1 "i sample)

= 1 T

X, = & '£ X, (m: number of samples),




"

X

D
t 4 = ——; (uy, : expected value of X ).
m-1 /o X D

Based on this result, we can test the null hypothesis:

i there is no significant difference between the two models.

L]
o
~

le My # 0.

If we accept HO’ we say that there are no significant
differences in performance betwen Markovian Control model
and the Bayesian Control model under a given situation.
Otherwise, we say that either one of the two methods performs
‘ better than the other under a given situation.

In this paper, 100 iterations for each sample and 50

samples are implemented.
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APPENDIX B
COMPUTER PROGRAMS
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